Issue 11, 2018

Growth of amorphous and epitaxial ZnSiP2–Si alloys on Si

Abstract

ZnSiP2 is a wide band gap material that is lattice matched with Si, offering the potential for Si-based optoelectronic materials and devices, including multijunction photovoltaics. We present a carbon-free chemical vapor deposition process for the growth of both epitaxial and amorphous thin films of ZnSiP2–Si alloys with tunable Si content on Si substrates. Si alloy content is widely tunable across the full composition space in amorphous films. Optical absorption of these films reveals relatively little variation with Si content, despite the fact that ZnSiP2 has a much wider band gap of 2.1 eV. Post-growth crystallization of Si-rich films resulted in epitaxial alignment, as measured by X-ray diffraction and transmission electron microscopy. These films have an optical absorption onset near 1.1 eV, suggesting the possibility of band gap tuning with Si content in crystalline films. The optical absorption is comparably strong to pure ZnSiP2, suggesting a more direct transition than in pure Si.

Graphical abstract: Growth of amorphous and epitaxial ZnSiP2–Si alloys on Si

Article information

Article type
Paper
Submitted
03 Dec 2017
Accepted
09 Jan 2018
First published
30 Jan 2018

J. Mater. Chem. C, 2018,6, 2696-2703

Growth of amorphous and epitaxial ZnSiP2–Si alloys on Si

A. D. Martinez, E. M. Miller, A. G. Norman, R. R. Schnepf, N. Leick, C. Perkins, P. Stradins, E. S. Toberer and A. C. Tamboli, J. Mater. Chem. C, 2018, 6, 2696 DOI: 10.1039/C7TC05545E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements