Issue 13, 2018

Synthesis and thermoelectric properties of 2- and 2,8-substituted tetrathiotetracenes

Abstract

Reaction of elemental sulfur with 2-R1 and 2,8-R1,R2-substituted tetracenes (2) in refluxing DMF affords 5,6,11,12 tetrathiotetracenes (1) in good yields (74–99%) for a range of substituents where R1,R2 are: H,H (a); Me,H (b); MeO,H (c); Ph,H (d); Me,Me (e), iPr,Me (f, iPr = iso-propyl, CHMe2), Me,MeO (g); MeO,MeO (h). The reaction rate is limited only by the solubility of the tetracene (2); 2g–h being both the least soluble and slowest reacting. At partial conversion recovered single crystalline 2g led to its X-ray structure determination. Vacuum deposited (substrate deposition temperature 300 K, pressure 7 × 10−6 mbar, source temperature 500 K) thin films from 1 (of initial 88–99% purity) show final electrical conductivities, σ(in plane) from 1.40 × 10−5 S cm−1 (1g) to 3.74 × 10−4 S cm−1 (1b) for the resultant near pristine films; while 1d proved too involatile to be effectively sublimed under these conditions. In comparison, initially 95% pure TTT (1a) based films show σ(in-plane) = 4.33 × 10−5 S cm−1. The purities of 1a–h are highly upgraded during sublimation. Well defined micro-crystallites showing blade, needle or mossy like habits are observed in the films. The Seebeck coefficients (Sb) of the prepared 1 range from 374 (1c) to 900 (1f) μV K−1 (vs. 855 μV K−1 for identically prepared 95% pure TTT, 1a). Doping of films of 1f (R1 = iPr, R2 = Me) with iodine produces optimal p-type behaviour: σ(in-plane) = 7.00 × 10−2 S cm−1, Sb = 175 μV K−1. The latter's power factor (PF) at 0.33 μW m−1 K−2 is more than 500 times that of the equivalent I2-doped TTT films (1a, R1 = R2 = H), previously regarded as the optimal material for thin film thermoelectric devices using acene radical cation motifs.

Graphical abstract: Synthesis and thermoelectric properties of 2- and 2,8-substituted tetrathiotetracenes

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2018
Accepted
07 Mar 2018
First published
07 Mar 2018

J. Mater. Chem. C, 2018,6, 3403-3409

Synthesis and thermoelectric properties of 2- and 2,8-substituted tetrathiotetracenes

M. R. Garrett, M. J. Durán-Peña, W. Lewis, K. Pudzs, J. Užulis, I. Mihailovs, B. Tyril, J. Shine, E. F. Smith, M. Rutkis and S. Woodward, J. Mater. Chem. C, 2018, 6, 3403 DOI: 10.1039/C8TC00073E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements