Issue 15, 2018

Synthesis of ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets for polymer field-effect transistors

Abstract

In this study, free-standing phenylethylammonium lead halide perovskite (i.e. (PEA)2PbX4 (PEA = C8H9NH3, X = Cl, Br, and I)) nanosheets (NSs) with few-layer thickness were synthesized using a facile antisolvent method. The as-prepared (PEA)2PbX4 NSs could be well-dispersed in organic solvents such as toluene and hexane. By incorporating the (PEA)2PbX4 NSs into poly(3-hexylthiophene) (P3HT) in toluene, (PEA)2PbX4 NSs: P3HT composite films were fabricated as channel layers for field-effect transistors (FETs) through spin coating. All of the resultant FETs show promising hole transport and current saturation behaviour at room temperature. Notably, the FET based on (PEA)2PbI4 NSs: P3HT exhibited the best hole mobility, μh, of 1.43 × 10−1 cm2 V−1 s−1 and threshold voltage, Vth, of 5.19 V. These results pave a new way for the application of 2D organic–inorganic hybrid perovskite NSs as channel materials in high-performance FETs.

Graphical abstract: Synthesis of ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets for polymer field-effect transistors

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2018
Accepted
06 Mar 2018
First published
07 Mar 2018

J. Mater. Chem. C, 2018,6, 3945-3950

Synthesis of ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets for polymer field-effect transistors

L. Zhu, H. Zhang, Q. Lu, Y. Wang, Z. Deng, Y. Hu, Z. Lou, Q. Cui, Y. Hou and F. Teng, J. Mater. Chem. C, 2018, 6, 3945 DOI: 10.1039/C8TC00289D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements