Issue 18, 2018

Elucidating the key role of fluorine in improving the charge mobility of electron acceptors for non-fullerene organic solar cells by multiscale simulations

Abstract

In the last decade, fluorination has been successfully applied to organic semiconductor materials, especially to donor or acceptor materials for non-fullerene organic solar cells (OSCs). Currently, the power conversion efficiency based on these fluorinated materials is higher than that of the fullerene-based ones. Thus fluorination can down-shift the frontier molecular orbits, enhance inter/intramolecular interactions and reduce the Coulombic potential between holes and electrons. However, the key role of fluorine in improving the charge mobility of electron acceptors has yet to be systematically investigated. Here, we comprehensively explore the intermolecular interactions and electron mobilities in amorphous ITOIC and ITOIC-2F films by multiscale simulations. The simulations indicate that the electrostatically driven fluorine–π (F–π) interaction can exhibit a key role in increasing the intermolecular interactions and reducing the distance between the terminal groups of the fluorinated material ITOIC-2F. This phenomenon ultimately increases the intermolecular transfer integral and leads to an increase in electron mobility. Our work suggests that adding fluorine to the appropriate position of the phenyl ring can effectively inverse the electrostatic potential and produce intermolecular F–π interactions, which will be an effective way to improve the electron mobilities of the fluorinated electron acceptors for non-fullerene OSCs.

Graphical abstract: Elucidating the key role of fluorine in improving the charge mobility of electron acceptors for non-fullerene organic solar cells by multiscale simulations

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2018
Accepted
05 Apr 2018
First published
10 Apr 2018

J. Mater. Chem. C, 2018,6, 4912-4918

Elucidating the key role of fluorine in improving the charge mobility of electron acceptors for non-fullerene organic solar cells by multiscale simulations

C. Yao, C. Peng, Y. Yang, L. Li, M. Bo and J. Wang, J. Mater. Chem. C, 2018, 6, 4912 DOI: 10.1039/C8TC01315B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements