Issue 33, 2018

Nonlinear optical absorption and ultrafast carrier dynamics of copper antimony sulfide semiconductor nanocrystals

Abstract

Ternary copper antimony sulfide nanocrystals (CAS NCs), a promising solar cell candidate, have been proposed and investigated from the perspective of synthesis method, linear optical response, and size and band structure tunability. Herein, we present the intensity related nonlinear absorption using the Z-scan technique. Electron and hole relaxation dynamics for the as-prepared three phases, CuSbS2, Cu3SbS4 and Cu12Sb4S13 NCs, are studied at the visible spectrum band. With the assistance of fs-resolved transient absorption spectrum technology, photon induced charge carrier dynamics within the valence/conduction band and trap states are analyzed and attributed to three relaxation processes, the corresponding lifetimes of which are ∼400 fs, ∼5 ps and ∼60 ps, respectively. This analysis on electron and hole spatial separation and recombination is significant for the improvement of CAS NC based devices, and paves the way for the application of semiconductor NCs in photovoltaic devices, optical detection and other optoelectronic devices.

Graphical abstract: Nonlinear optical absorption and ultrafast carrier dynamics of copper antimony sulfide semiconductor nanocrystals

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2018
Accepted
10 Jun 2018
First published
13 Aug 2018

J. Mater. Chem. C, 2018,6, 8977-8983

Nonlinear optical absorption and ultrafast carrier dynamics of copper antimony sulfide semiconductor nanocrystals

F. Zhang, K. Chen, X. Jiang, Y. Wang, Y. Ge, L. Wu, S. Xu, Q. Bao and H. Zhang, J. Mater. Chem. C, 2018, 6, 8977 DOI: 10.1039/C8TC01606B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements