Issue 24, 2018

Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb2Se3 crystals

Abstract

Sb2Se3 is a highly interesting semiconductor with high absorption coefficient in the visible range and is composed of non-toxic and earth-abundant elements. To overcome the challenge of intrinsic low electrical conductivity of Sb2Se3 crystals, tin-doped (SnxSb1−x)2Se3 semiconductors (x = 0.00, 0.03, 0.05, 0.07 and 0.10) have been synthesized by a conventional melt-quenching method in a vacuum sealed silica tube. With increasing Sn doping concentration, the (SnxSb1−x)2Se3 crystals exhibited a great improvement in electrical conductivity by several orders of magnitude thanks to the great increase of carrier concentration reaching almost 2 × 1016 cm−3. Compared to undoped Sb2Se3, the dark current density of a representative (Sn0.10Sb0.90)2Se3 increased by approximately 10 times and the photocurrent density with essentially visible illumination increased by approximately 14 times. In addition, the doped sample showed a faster, reversible and stable photoresponse. These excellent performances combined with a simple and easily scalable synthesis method pave the way for using this semiconductor for highly efficient photoelectric devices.

Graphical abstract: Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb2Se3 crystals

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2018
Accepted
11 May 2018
First published
11 May 2018

J. Mater. Chem. C, 2018,6, 6465-6470

Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb2Se3 crystals

S. Chen, X. Qiao, Z. Zheng, M. Cathelinaud, H. Ma, X. Fan and X. Zhang, J. Mater. Chem. C, 2018, 6, 6465 DOI: 10.1039/C8TC01683F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements