Issue 33, 2018

Weak thermal quenching of the luminescence in the Ca3Sc2Si3O12:Ce3+ garnet phosphor

Abstract

We report results of the luminescence properties of the three garnet type phosphors Ce3+-doped Ca3Sc2Si3O12 (CSSO:Ce3+), Sr3Y2Ge3O12 (SYG:Ce3+) and Y3Al5O12 (YAG:Ce3+), investigated using optical spectroscopy techniques and vacuum referred binding energy (VRBE) diagram analysis. By monitoring the temperature dependence of the luminescence decay time we establish an excellent, intrinsic, thermal stability of luminescence in CSSO:Ce3+, with a nearly constant decay time (≈60 ns) up to, at least, T = 860 K. In comparison, SYG:Ce3+ and YAG:Ce3+ exhibit a significant reduction of the luminescence decay time upon heating, starting at around T = 280 K and T = 550 K, respectively, suggesting a lower internal thermal stability of luminescence in these two garnet phosphors. These findings are supported by the energy separation between the Ce3+ 5d1 level and the conduction band (CB) of the respective hosts, which are found at 1.36 eV (CSSO:Ce3+), 0.45 eV (SYG:Ce3+), and 1.17 eV (YAG:Ce3+), respectively, as predicted by their VRBE diagrams. The performance of CSSO:Ce3+ was evaluated by applying the phosphor on a blue InGaN LED. The system shows a luminous efficacy of optical radiation of 243 lm W−1 and a linear response with increasing applied voltage, suggesting it is a highly promising phosphor for future technological applications, particularly at high temperature operating environments.

Graphical abstract: Weak thermal quenching of the luminescence in the Ca3Sc2Si3O12:Ce3+ garnet phosphor

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2018
Accepted
12 Jul 2018
First published
26 Jul 2018
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2018,6, 8923-8933

Weak thermal quenching of the luminescence in the Ca3Sc2Si3O12:Ce3+ garnet phosphor

S. K. Sharma, Y. Lin, I. Carrasco, T. Tingberg, M. Bettinelli and M. Karlsson, J. Mater. Chem. C, 2018, 6, 8923 DOI: 10.1039/C8TC02907E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements