Issue 34, 2018

Epitaxial ferroelectric Hf0.5Zr0.5O2 thin film on a buffered YSZ substrate through interface reaction

Abstract

In this study, we used pulsed laser deposition to successfully grow epitaxial Hf0.5Zr0.5O2 (HZO) films on (001)-, (011)- and (111)-oriented yttria-stabilized zirconia (YSZ) substrates using TiN as the bottom electrode. It is found that the TiO2 buffer layer formed by the interface reaction is the key to epitaxial growth. The epitaxial HZO films (∼15 nm in thickness) exhibit ferroelectric behaviour with a remnant polarization of 7–30 μC cm−2 and a coercive field of 1.1–2.3 MV cm−1. Using piezoresponse force microscopy, polar domains can be written/read and reversibly switched with a phase change of 180° in all the films. X-ray diffraction and high-resolution transmission electron microscopy reveal the presence of nano domains, and a clear epitaxial relation among different layers whose interfaces are relaxed by reconstruction. X-ray absorption spectroscopy provides deep insight into the microstructural origin of ferroelectricity in HZO. A large interface strain stabilized ferroelectric state is observed which is manifested as the non-centrosymmetric Pca21 phase.

Graphical abstract: Epitaxial ferroelectric Hf0.5Zr0.5O2 thin film on a buffered YSZ substrate through interface reaction

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2018
Accepted
07 Aug 2018
First published
09 Aug 2018

J. Mater. Chem. C, 2018,6, 9224-9231

Epitaxial ferroelectric Hf0.5Zr0.5O2 thin film on a buffered YSZ substrate through interface reaction

T. Li, N. Zhang, Z. Sun, C. Xie, M. Ye, S. Mazumdar, L. Shu, Y. Wang, D. Wang, L. Chen, S. Ke and H. Huang, J. Mater. Chem. C, 2018, 6, 9224 DOI: 10.1039/C8TC02941E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements