Issue 40, 2018

Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3–Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions

Abstract

The development of electronic devices towards integration, miniaturization and environmental friendliness has propelled much recent research on lead-free dielectric capacitors for energy storage, however, high energy-storage density is still an extremely challenging objective for lead-free dielectric materials. Here, a novel lead-free relaxor ferroelectric (1 − x)(Bi0.5 Na0.5)TiO3xBi(Ni0.5Zr0.5)O3 (BNT–xBNZ, x = 0–0.5) thick film (1 μm) was fabricated by a water-based sol–gel method. Doping of BNZ into the BNT host promoted the formation of polar nanoregions (PNRs), whose domain switching became easier, leading to an improved energy-storage performance. Surprisingly, an ultrahigh recoverable energy density of 50.1 J cm−3 and a high energy-storage efficiency of 63.9% under 2200 kV cm−1 were achieved simultaneously with x = 0.4, which are both more than 100% higher than those of the pure BNT sample. This excellent energy-storage performance can be perfectly comparable with that of lead-based films. Furthermore, the BNT–0.4BNZ thick film showed strong fatigue endurance after 6 × 107 cycles, and it possessed good thermal and frequency stability. The pulsed discharge current waveform demonstrated that the BNT–0.4BNZ thick film showed a very fast discharge speed (210 ns). This study shows that BNT-based materials have an unexpected role as a lead-free family in the field of energy storage and could stimulate the design and fabrication of BNT-based dielectrics with ultrahigh energy-storage performance.

Graphical abstract: Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3–Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2018
Accepted
22 Aug 2018
First published
22 Aug 2018

J. Mater. Chem. C, 2018,6, 10693-10703

Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3–Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions

N. Sun, Y. Li, Q. Zhang and X. Hao, J. Mater. Chem. C, 2018, 6, 10693 DOI: 10.1039/C8TC03481H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements