Issue 8, 2019

Printed low-cost microfluidic analytical devices based on a transparent substrate

Abstract

This work describes the development of a microfluidic analytical device prepared on a transparent OHP film substrate, named the microfluidic transparent film-based analytical device (μTFAD). Printing technologies including wax printing for microchannel patterning and inkjet printing for chemical assay component deposition have been employed for the μTFAD fabrication. The fully printed μTFAD allowed gravity-assisted pump-free transportation of the sample liquid (50 μL) and an absorbance measurement-based iron ion (Fe2+) assay using nitroso-PSAP as the colorimetric reagent within a wax-patterned microfluidic structure. By measuring absorbance values at the Fe2+-nitroso-PSAP complex-specific wavelength (756 nm), a response curve with a linear range of 0–200 μM was obtained. The limit of detection (1.18 μM) obtained with the proposed μTFADs was comparable to the results achieved with a conventional 96-well microplate assay (0.92 μM) and lower than that in the case of digital colour analysis-assisted filter paper spot tests (7.71 μM) or the absorbance analysis of refractive index-matched translucent filter paper spots (37.2 μM). In addition, highly selective Fe2+ detection has been achieved in the presence of potentially interfering metal ions (Cu2+, Co2+, Ni2+) without the use of any masking reagents, owing to the selection of the target complex-specific wavelength in the absorbance measurement on μTFADs.

Graphical abstract: Printed low-cost microfluidic analytical devices based on a transparent substrate

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2018
Accepted
23 Feb 2019
First published
25 Feb 2019

Analyst, 2019,144, 2746-2754

Printed low-cost microfluidic analytical devices based on a transparent substrate

S. Fujisaki, H. Shibata, K. Yamada, K. Suzuki and D. Citterio, Analyst, 2019, 144, 2746 DOI: 10.1039/C8AN02304B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements