Issue 5, 2019

UV Raman chemical imaging using compressed sensing

Abstract

Different chemical (hyperspectral) imaging techniques have proven to be powerful tools to provide and illustrate insightful data within a broad range of research areas. The present communication includes proof-of-principle results of UV Raman hyperspectral imaging, achieved via compressed sensing measurements using coded apertures (CA) and a reconstruction algorithm. The simple and cheap CA set up, obtained by a 50% overall transmissive random binary mask (chromium on fused silica with 100 μm × 100 μm pixel size) positioned at the entrance plane of an imaging spectrograph, resulted in an overall high throughput for the UV region of interest. The mask was mounted on a translation stage, allowing reproducible switching to different CA, thus making possible for multi frame CA imaging. Results from a scene containing liquid droplets are shown as examples and, as expected, qualitative improvements in resolution and contrast could be observed in both the spatial and spectral domain as the number of CA frames was increased.

Graphical abstract: UV Raman chemical imaging using compressed sensing

Article information

Article type
Communication
Submitted
09 Jan 2019
Accepted
02 Feb 2019
First published
04 Feb 2019

Analyst, 2019,144, 1513-1518

UV Raman chemical imaging using compressed sensing

M. Nordberg and L. Landström, Analyst, 2019, 144, 1513 DOI: 10.1039/C9AN00056A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements