Investigation of hairpin DNA and chelerythrine interaction by a single bio-nanopore sensing interface†
Abstract
Chelerythrine (CHE) is one of the potential drugs for cancer treatments. The interaction between hairpin DNA and CHE has been investigated by spectral and mass spectrometry methods. In this paper, the stability of hairpin DNA with different loop bases and its interaction with CHE were explored with a single α-hemolysin (α-HL) nanopore sensing interface. The results showed that the characteristic current pulses not only relate to the loop composition changes of the hairpin DNA, but also provide interaction information between CHE and the hairpin DNA molecules. The dwell time of current pulses for hairpin DNA was significantly increased (hundreds of ms) due to the addition of CHE, and two characteristic current distributions were recognized for the hairpin with T3 and C3 loops. The two characteristic current groups could be ascribed to the hairpin DNA and the ones with CHE. This study indicates that it is possible to study the interaction between single CHE and single hairpin DNA molecules by the single-nanopore sensing interface as an alternative method to conventional spectrometric methods for therapeutic mechanism and drug screening purposes.