Issue 9, 2019

Base excision repair mediated cascading triple-signal amplification for the sensitive detection of human alkyladenine DNA glycosylase

Abstract

DNA glycosylase (DG) plays a significant role in repairing DNA lesions, and the dysregulation of DG activity is associated with a variety of human pathologies. Thus, the detection of DG activity is essential for biomedical research and clinical diagnosis. Herein, we develop a facile fluorometric method based on the base excision repair (BER) mediated cascading triple-signal amplification for the sensitive detection of DG. The presence of human alkyladenine DNA glycosylase (hAAG) can initiate the cleavage of the substrate at the mismatched deoxyinosine site by endonuclease IV (Endo IV), resulting in the breaking of the DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate strand displacement amplification (SDA) to release primers. The released primers can further bind to a circular template to induce an exponential primer generation rolling circle amplification (PG-RCA) reaction, producing a large number of primers. The primers that resulted from the SDA and PG-RCA reaction can induce the subsequent recycling cleavage of signal probes, leading to the generation of a fluorescence signal. Taking advantage of the high amplification efficiency of triple-signal amplification and the low background signal resulting from single uracil repair-mediated inhibition of nonspecific amplification, this method exhibits a low detection limit of 0.026 U mL−1 and a large dynamic range of 4 orders of magnitude for hAAG. Moreover, this method has distinct advantages of simplicity and low cost, and it can further quantify the hAAG activity from HeLa cell extracts, holding great potential in clinical diagnosis and biomedical research.

Graphical abstract: Base excision repair mediated cascading triple-signal amplification for the sensitive detection of human alkyladenine DNA glycosylase

Article information

Article type
Paper
Submitted
28 Jan 2019
Accepted
08 Mar 2019
First published
11 Mar 2019

Analyst, 2019,144, 3064-3071

Base excision repair mediated cascading triple-signal amplification for the sensitive detection of human alkyladenine DNA glycosylase

H. Zhang, L. Wang, Y. Xie, X. Zuo, H. Chen and X. Chen, Analyst, 2019, 144, 3064 DOI: 10.1039/C9AN00200F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements