Sensitive analysis of multiple low-molecular-weight thiols in a single human cervical cancer cell by chemical derivatization-liquid chromatography-mass spectrometry†
Abstract
Low-molecular-weight (LMW) thiols are important small molecules that regulate or maintain redox homeostasis in physiological and pathological processes. Assessing the concentrations of LMW thiols in biological systems may provide valuable information regarding physiological processes and the early diagnosis of some diseases. Here, we developed a method to simultaneously determine the concentrations of multiple LWM thiols in single cells by chemical derivatization assisted liquid chromatography-mass spectrometry (LC-MS). In this method, we synthesized a pair of stable isotope reagents, N-(acridin-9-yl)-2-bromoacetamide (AYBA) and N-(1,2,3,4-[2H4]-acridin-9-yl)-2-bromoacetamide ([2H4]AYBA). AYBA was used to derivatize LWM thiols in human cervical cancer (HeLa) cells, while [2H4]AYBA was used to derivatize standard LWM thiols to prepare internal standards for the LC-MS method development. The proposed AYBA derivatization greatly enhanced the detection sensitivity of LWM thiols by LC-MS, and thereby achieved the simultaneous detection of multiple LWM thiols by LC-MS in ∼1000 HeLa cells. Finally, the developed method was successfully utilized for the quantitative analysis of multiple LWM thiols in a single HeLa cell and the content changes of LWM thiols in a single HeLa cell before and after oxidative stress treatment. Accordingly, six LMW thiols were detected, including cysteamine, cysteine, glutathione, homocysteine, hydrogen sulfide, and pantetheine.