Hydrogen peroxide detection with a silver nanoparticle grating chip fabricated by plasmonic plating†
Abstract
An optical detection of hydrogen peroxide (H2O2) is proposed, using grating structures of silver nanoparticles (AgNPs). Periodic line structures of AgNPs are deposited on a gold nanoparticle (AuNP)-decorated glass plate using an interference exposure with a green laser beam, based on the plasmonic plating method. This AgNP grating chip diffracts incident light, and the diffraction efficiency is dependent on the amount of AgNPs. By applying a drop of H2O2 solution onto the chip, the diffraction intensity declines due to the autocatalytic decomposition of AgNPs. A portable measurement system of the diffraction intensity change is constructed, and the H2O2 detection in the concentration range 6.7–668 μmol L−1 is performed in 2 min simply by dropping the H2O2 solution onto the substrate.