Issue 31, 2019

A dual-mode colorimetric sensor based on copper nanoparticles for the detection of mercury-(ii) ions

Abstract

In this study, water-soluble citrate-capped copper nanoparticles (Cu NPs) were synthesized by a simple and rapid method. We found that these citrate-capped Cu NPs possessed an intrinsic peroxidase-like activity, which could catalyse the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to generate a light blue product in the presence of hydrogen peroxide (H2O2). It was also found that mercury ions (Hg2+) could enhance the peroxidase-like activity of the citrate-capped Cu NPs, causing the colour to turn bright blue. The colour change was dependent on the concentration of Hg2+. Therefore, a colorimetric method for Hg2+ detection was established with a linear range from 0.050 μM to 10.000 μM and a detection limit of 0.185 Mm. More interestingly, citrate-capped Cu NPs have a characteristic absorption peak at 260 nm, we also found that Hg2+ could cause the absorption peak at 260 nm to change. Therefore, we developed another colorimetric method for Hg2+ detection based on the absorption peak of citrate-capped Cu NPs at 260 nm. This colorimetric method was shown to enable convenient and sensitive quantification of Hg2+ in the concentration range of 0.100 μM to 6.000 μM with a limit of detection of 0.052 μM. In this study, a dual-mode sensor for detection of Hg2+ was constructed, which exhibited good sensitivity and selectivity.

Graphical abstract: A dual-mode colorimetric sensor based on copper nanoparticles for the detection of mercury-(ii) ions

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2019
Accepted
22 Jun 2019
First published
29 Jun 2019

Anal. Methods, 2019,11, 4014-4021

A dual-mode colorimetric sensor based on copper nanoparticles for the detection of mercury-(II) ions

Q. Li, F. Wu, M. Mao, X. Ji, L. Wei, J. Li and L. Ma, Anal. Methods, 2019, 11, 4014 DOI: 10.1039/C9AY00843H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements