Issue 3, 2019

Toward reducing biomaterial antigenic potential: a miniaturized Fc-binding domain for local deposition of antibodies

Abstract

A peptide derived from staphylococcal protein A (SpA) was developed as an affinity module for antibody delivery applications. The miniaturized protein consists of the first helix of the engineered SpA Z domain fused with the self-assembling peptide (SAP) AEAEAKAKAEAEAKAK, or EAK. The resulting peptide, named Z15_EAK, was shown to possess fibrillization properties and an Fc-binding function. The peptide induced a red shift in the Congo red absorbance characteristic of peptide fibrils, also evidenced in transmission electron microscopy images. The one-site binding affinity (Kd) of a gel-like coacervate generated by admixing Z15_EAK with EAK for IgG was determined to be 1.27 ± 0.14 μM based on a microplate-based titration assay. The coacervate was found to localize IgG subcutaneously in mouse footpads for 8 to 28 days. A set of in vivo data was fit to a one-compartment model for simulating the relative fractions of IgG dissociated from the materials in the depot. The model predicted that close to 27% of the antibodies injected were available unbound for the duration of the experiment. Z15_EAK did not appear to induce innate immune responses; injecting Z15_EAK into mouse footpads elicited neither interleukin-6 (IL-6) nor tumor necrosis factor-alpha (TNF-α) from splenocytes isolated from the animals one day, seven days, or eleven days afterward. The antigenic potential of Z15 was analyzed using a bioinformatic approach in predicting sequences in SpA and Z15 dually presented by class I and class II human MHC alleles covering the majority of the population. A peptide in SpA identified as a potential T cell epitope cross reacting with a known epitope in a microbial antigen was eliminated by miniaturization. These results demonstrate that Z15_EAK is a potential platform for generating antibody depots by which the impacts of Fc-based biotherapeutics can be enhanced through spatiotemporal control.

Graphical abstract: Toward reducing biomaterial antigenic potential: a miniaturized Fc-binding domain for local deposition of antibodies

Supplementary files

Article information

Article type
Paper
Submitted
01 Oct 2018
Accepted
03 Dec 2018
First published
21 Dec 2018

Biomater. Sci., 2019,7, 760-772

Author version available

Toward reducing biomaterial antigenic potential: a miniaturized Fc-binding domain for local deposition of antibodies

N. B. Pham, W. Liu, N. R. Schueller, E. S. Gawalt, Y. Fan and W. S. Meng, Biomater. Sci., 2019, 7, 760 DOI: 10.1039/C8BM01220B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements