Characterization of a novel decellularized bone marrow scaffold as an inductive environment for hematopoietic stem cells
Abstract
Due to the increasing demand for a bone marrow study model, we developed a natural scaffold from decellularized bovine bone marrow (DeBM). The obtained bioscaffold was analyzed after the decellularization process; histological staining, scanning and transmission electron microscopy confirmed the preservation of its native 3D-architecture; including blood vessels and cell niches as well as the integrity of important components of the extracellular matrix; Collagen III, IV and fibronectin. In addition to biochemical composition, physical properties of the bone marrow were also conserved. We evaluated the suitability of this bio-scaffold as a tridimensional culture platform. Seeding experiments with umbilical cord-derived hematopoietic stem cells and human bone marrow stromal cell line HS5 demonstrated that this scaffold is capable of supporting hematopoietic and stromal cell adhesion and proliferation without the need of exogenous factors. DeBM provided an inductive environment for the repopulation of the bone marrow inducing the expression of SDF-1, HGF and SCF by seeded stromal cells. The presence of these potent hematopoietic chemoattractants would be crucial for ex vivo long-term culture of HSCs, and for recreating the natural microenvironment of the bone marrow for bioengineering applications. We conclude that the decellularization process succeeded in preserving the 3D structure and mechanical properties of the bone marrow. The resulting scaffold is suitable for cell culture, representing an advantageous bone marrow experimental model, and potentially an effective platform for CD34+ HSC expansion and differentiation for clinical applications.