Conformational change due to intramolecular hydrophobic interaction leads to large blue-shifted emission from single molecular cage solutions†
Abstract
We demonstrate a unique negative solvatochromic emission (NSE) process from a conformational change of a coordination cage in response to solvent composition. The cationic cage contains two tetra-(4-pyridylphenyl)ethylene (TPPE) luminogens on two opposite faces, linked by Pt(PEt3)2 and isophthalate. When the solvent changes from acetone/acetonitrile/methanol to water, the emission of single cages gradually shifts to short wavelength (NSE) with a drastic value of ∼60 nm. Small angle X-ray scattering (SAXS) measurements indicate a molecular conformational change during the process and intramolecular π–π stacking and hydrophobic interaction between the TPPE planes could be the driving forces. As a comparison, a cage with a longer inter-fluorophore distance does not have such strong intramolecular interactions and only shows regular positive solvatochromic emission (PSE) under the same conditions.