Issue 20, 2019

Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance

Abstract

Here, we report the synthesis of Cu-doped CeO2 nanorods (denoted as Cu-CeO2-x, x represents the mass content (wt%) of the doped Cu) by a facile hydrothermal method, followed by thermal treatment in an H2/Ar atmosphere. As the electrocatalyst, Cu-CeO2-3.9 with a large surface area of 95.2 m2 g−1 and mesoporous structure exhibits high electrocatalytic activity toward the N2 reduction reaction (NRR), delivering an NH3 yield rate of 5.3 × 10−10 mol s−1 cm−2 and a faradaic efficiency of 19.1% at −0.45 V (vs. RHE) in a 0.1 M Na2SO4 electrolyte (pH = 6.3), much higher than the NRR performance achieved with pure CeO2 nanorods. The Cu doping can effectively tune the concentration of multiple oxygen vacancies in CeO2, thus resulting in significantly improved NRR activity.

Graphical abstract: Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance

Supplementary files

Article information

Article type
Communication
Submitted
06 Jan 2019
Accepted
12 Feb 2019
First published
13 Feb 2019

Chem. Commun., 2019,55, 2952-2955

Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance

S. Zhang, C. Zhao, Y. Liu, W. Li, J. Wang, G. Wang, Y. Zhang, H. Zhang and H. Zhao, Chem. Commun., 2019, 55, 2952 DOI: 10.1039/C9CC00123A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements