Rational redox tuning of transition metal sites: learning from superoxide reductase†
Abstract
Using superoxide reductase as a model system, a computational approach reveals how histidine tautomerism tunes the redox properties of metalloenzymes to enable their catalytic function. Inspired by these experimentally inaccessible insights, non-canonical histidine congeners are introduced as new versatile tools for the rational engineering of biological transition metal sites.