Issue 65, 2019

A hybrid metal–dielectric zero mode waveguide for enhanced single molecule detection

Abstract

We fabricated hybrid metal–dielectric nanoslots and measured their optical response at three different wavelengths. The nanostructure is fabricated on a bilayer film formed by the sequential deposition of silicon and gold on a transparent substrate. The optical characterization is done via fluorescence spectroscopy measurements. We characterized the fluorescence enhancement, as well as the lifetime and the detection volume reduction for each wavelength. We observe that the hybrid metal–dielectric nanoslots behave as enhanced zero mode waveguides in the near-infrared spectral region. Their detection volume is such that they can perform enhanced single-molecule detection at tens of μM. We compared their behavior with that of a golden ZMW, and we demonstrated that the dielectric silicon layer improves both the optical performance and the stability of the device.

Graphical abstract: A hybrid metal–dielectric zero mode waveguide for enhanced single molecule detection

Supplementary files

Article information

Article type
Communication
Submitted
29 May 2019
Accepted
22 Jul 2019
First published
22 Jul 2019

Chem. Commun., 2019,55, 9725-9728

A hybrid metal–dielectric zero mode waveguide for enhanced single molecule detection

X. Zambrana-Puyalto, P. Ponzellini, N. Maccaferri, E. Tessarolo, M. G. Pelizzo, W. Zhang, G. Barbillon, G. Lu and D. Garoli, Chem. Commun., 2019, 55, 9725 DOI: 10.1039/C9CC04118D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements