Issue 83, 2019

Protein adaptors assemble functional proteins on DNA scaffolds

Abstract

DNA is an attractive molecular building block to construct nanoscale structures for a variety of applications. In addition to their structure and function, modification the DNA nanostructures by other molecules opens almost unlimited possibilities for producing functional DNA-based architectures. Among the molecules to functionalize DNA nanostructures, proteins are one of the most attractive candidates due to their vast functional variations. DNA nanostructures loaded with various types of proteins hold promise for applications in the life and material sciences. When loading proteins of interest on DNA nanostructures, the nanostructures by themselves act as scaffolds to specifically control the location and number of protein molecules. The methods to arrange proteins of interest on DNA scaffolds at high yields while retaining their activity are still the most demanding task in constructing usable protein-modified DNA nanostructures. Here, we provide an overview of the existing methods applied for assembling proteins of interest on DNA scaffolds. The assembling methods were categorized into two main classes, noncovalent and covalent conjugation, with both showing pros and cons. The recent advance of DNA-binding adaptor mediated assembly of proteins on the DNA scaffolds is highlighted and discussed in connection with the future perspectives of protein assembled DNA nanoarchitectures.

Graphical abstract: Protein adaptors assemble functional proteins on DNA scaffolds

Article information

Article type
Feature Article
Submitted
18 Jun 2019
Accepted
18 Sep 2019
First published
27 Sep 2019

Chem. Commun., 2019,55, 12428-12446

Author version available

Protein adaptors assemble functional proteins on DNA scaffolds

T. A. Ngo, H. Dinh, T. M. Nguyen, F. F. Liew, E. Nakata and T. Morii, Chem. Commun., 2019, 55, 12428 DOI: 10.1039/C9CC04661E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements