Issue 22, 2019

Orthorhombic distortion in Au nanoparticles induced by high pressure

Abstract

It is well known that the properties of metal nanoparticles strongly depend on their size. This dependence can generate unusual structures, and it enabled induction of phase transitions at lower pressure and temperature compared to the bulk materials. Bulk transition metals do not have phase transitions under ambient conditions. Bulk gold phase transitions are expected at pressures above 200 GPa. Herein, it is reported that an orthorhombic lattice distortion in single-crystal truncated-octahedral gold nanoparticles is induced by applying a high pressure below 12 GPa in a diamond anvil cell at room temperature (295 K). An asymmetrical lattice distortion of ∼3% along the lattice planes, detected through atomic-resolution electron microscopy and electron diffraction, indicated that lattice strain generated by the imposed experimental conditions led to a transition from a cubic to an orthorhombic structure. Interestingly, the mentioned lattice distortion was not observed in twinned nanoparticles subjected to the same pressure and temperature conditions. The lattice deformation took place at a much lower pressure and temperature compared to that of bulk gold, demonstrating dependency on the particle shape and structure. The experimental results reflect not only a size effect, but also a strong surface, morphological, and structural effect on the behavior of materials at the nanoscale under high-pressure conditions.

Graphical abstract: Orthorhombic distortion in Au nanoparticles induced by high pressure

Article information

Article type
Paper
Submitted
20 Jan 2019
Accepted
28 Apr 2019
First published
29 Apr 2019

CrystEngComm, 2019,21, 3451-3459

Orthorhombic distortion in Au nanoparticles induced by high pressure

R. Mendoza-Cruz, P. Parajuli, H. J. Ojeda-Galván, Á. G. Rodríguez, H. R. Navarro-Contreras, J. J. Velázquez-Salazar, L. Bazán-Díaz and M. José-Yacamán, CrystEngComm, 2019, 21, 3451 DOI: 10.1039/C9CE00104B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements