Issue 17, 2019

Si 1s−1, 2s−1 and 2p−1 lifetime broadening of SiX4 (X = F, Cl, Br, CH3) molecules: SiF4 anomalous behaviour reassessed

Abstract

The Si 1s−1, Si 2s−1, and Si 2p−1 photoelectron spectra of the SiX4 molecules with X = F, Cl, Br, CH3 were measured. From these spectra the Si 1s−1 and Si 2s−1 lifetime broadenings were determined, revealing a significantly larger value for the Si 2s−1 core hole of SiF4 than for the same core hole of the other molecules of the sequence. This finding is in line with the results of the Si 2p−1 core holes of a number of SiX4 molecules, with an exceptionally large broadening for SiF4. For the Si 2s−1 core hole of SiF4 the difference to the other SiX4 molecules can be explained in terms of Interatomic Coulomb Decay (ICD)-like processes. For the Si 2p−1 core hole of SiF4 the estimated values for the sum of the Intraatomic Auger Electron Decay (IAED) and ICD-like processes are too small to explain the observed linewidth. However, the results of the given discussion render for SiF4 significant contributions from Electron Transfer Mediated Decay (ETMD)-like processes at least plausible. On the grounds of our results, some more molecular systems in which similar processes can be observed are identified.

Graphical abstract: Si 1s−1, 2s−1 and 2p−1 lifetime broadening of SiX4 (X = F, Cl, Br, CH3) molecules: SiF4 anomalous behaviour reassessed

Article information

Article type
Paper
Submitted
30 Nov 2018
Accepted
29 Mar 2019
First published
01 Apr 2019

Phys. Chem. Chem. Phys., 2019,21, 8827-8836

Si 1s−1, 2s−1 and 2p−1 lifetime broadening of SiX4 (X = F, Cl, Br, CH3) molecules: SiF4 anomalous behaviour reassessed

R. Püttner, T. Marchenko, R. Guillemin, L. Journel, G. Goldsztejn, D. Céolin, O. Takahashi, K. Ueda, A. F. Lago, M. N. Piancastelli and M. Simon, Phys. Chem. Chem. Phys., 2019, 21, 8827 DOI: 10.1039/C8CP07369D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements