Issue 10, 2019

Impact of Y3+-ions on the structure and phase behavior of phospholipid model membranes

Abstract

Trivalent yttrium cations are able to mimic the behavior of Ca2+ in many important biochemical processes, and their application in medicinal chemistry has increased in recent years. While the effect of mono- and divalent salts on lipid membranes has been studied extensively, the effect of trivalent cations, such as Y3+, on the structure and phase behavior of lipid bilayers is largely unknown. Here, we studied the effect of YCl3 on the structure, phase behavior and thermodynamic parameters of zwitterionic DPPC, 20% anionic DPPC/DPPG (80/20) and 10% anionic DOPC/DOPG/DPPC/DPPG/cholesterol (20/5/45/5/25) model biomembrane systems using Fourier-transform infrared spectroscopy, differential scanning calorimetry, Laurdan fluorescence spectroscopy, confocal fluorescence microscopy, zeta potential measurements and atomic force microscopy, covering a wide range of salt concentrations, temperature and pressure. Y3+ ions penetrate deep into the lipid headgroup region and are coordinated to the phosphate groups, resulting in a stronger lipid packing and partial dehydration of the headgroup region. Increasing Y3+ concentration leads to a pronounced increase of the gel-to-fluid phase transition temperature of the phospholipid bilayers, owing to an increased lateral compression pressure, particularly for anionic lipid membranes. Increased lipid chain order and phase segregation of anionic membranes is fostered at high salt concentrations owing to lipid sorting. The fluid-to-gel phase transition pressure decreases significantly with the concentration of the trivalent ion, most pronounced for the negatively charged lipid vesicles. Remarkably, the Y3+-induced ordering effect is much stronger than a hydrostatic pressure-induced ordering of the lipid chains.

Graphical abstract: Impact of Y3+-ions on the structure and phase behavior of phospholipid model membranes

Article information

Article type
Paper
Submitted
03 Dec 2018
Accepted
19 Feb 2019
First published
19 Feb 2019

Phys. Chem. Chem. Phys., 2019,21, 5730-5743

Impact of Y3+-ions on the structure and phase behavior of phospholipid model membranes

S. Bornemann, M. Herzog and R. Winter, Phys. Chem. Chem. Phys., 2019, 21, 5730 DOI: 10.1039/C8CP07413E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements