Issue 32, 2019

Spin-pair state-induced exceptional magnetic field responses from a thermally activated delayed fluorescence-assisted fluorescent material doping system

Abstract

The thermally activated delayed fluorescence (TADF) material 2,3,5,6-tetrakis(3,6-diphenylcarbazol-9-yl)-1,4-dicyanobenzene (4CzTPN-Ph) and the conventional fluorescent dopant 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were used to co-dope the host material 4,4′-bis(carbazol-9-yl)biphenyl (CBP) for the fabrication of TADF-assisted fluorescent organic light-emitting diodes (OLEDs). Some exceptional magnetic field effect (MFE) curves with abundant structures and four tunable components within a low magnetic field range (≤50 mT) were obtained, in sharp contrast to the maximum of two components observed in typical OLEDs. These MFE components were easily tuned by the injection current, dopant concentration, working temperature, and dopant energy gap, leading to a wide variety of MFE curve line shapes. The experimental results are attributed to the spin-pair state inter-conversions occurring in the device, including intersystem crossing (ISC) of CBP polaron pairs, ISC of 4CzTPN-Ph polaron pairs, reverse ISC (RISC) of 4CzTPN-Ph excitons, RISC of DCJTB polaron pairs, DCJTB triplet fusion, and DCJTB triplet-charge annihilation. Moreover, the exciton energy transfer processes among the host material and the guest dopants had a pronounced impact on the formation of these four components. This work gives a deeper understanding of the microscopic mechanisms of TADF-based co-doped systems for the further development of organic magnetic field effects in the extensive field of OLEDs.

Graphical abstract: Spin-pair state-induced exceptional magnetic field responses from a thermally activated delayed fluorescence-assisted fluorescent material doping system

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2019
Accepted
10 Jul 2019
First published
11 Jul 2019

Phys. Chem. Chem. Phys., 2019,21, 17673-17686

Spin-pair state-induced exceptional magnetic field responses from a thermally activated delayed fluorescence-assisted fluorescent material doping system

Y. Hu, X. Tang, R. Pan, J. Deng, H. Zhu and Z. Xiong, Phys. Chem. Chem. Phys., 2019, 21, 17673 DOI: 10.1039/C9CP01201J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements