Issue 27, 2019

Exploiting scaling laws for designing polymeric bottle brushes: a theoretical coarse-graining for homopolymeric branched polymers

Abstract

Bottle brushes are polymeric macromolecules made of a linear polymeric backbone grafted with side chains. The choice of the grafting density σg, the length ns the grafted side chains and their chemical nature fully determines the properties of each macromolecule, such as its elasticity and its folding behaviour. Typically, experimental bottle brushes are systems made of tens of thousands of monomeric units, rendering a computational approach extremely expensive, especially in the case of bottle brush solutions. A proper coarse graining description of these macromolecules thus appears essential. We present here a theoretical approach able to develop a general, transferable and analytical multi-scale coarse graining of homopolymeric bottle brush polymers under good solvent conditions. Starting from scaling theories, each macromolecule is mapped onto a chain of tethered star polymers, whose effective potential is known from scaling predictions, computational and experimental validations and can be expressed as a function of the number of arms f, and the length na of each arm. Stars are then tethered to one another and the effective potential between them is shown to only depend on the key parameters of the original bottle brush polymer (σg, ns). The generalised form of the effective potential is then used to reproduce properties of the macromolecules obtained both with scaling theories and with simulations. The general form of the effective potentials derived in the current study allows a theoretical and computational description of the properties of homopolymeric bottle brush polymers for all grafting densities and all lengths of both backbone and grafted arms, opening the path for a manifold of applications.

Graphical abstract: Exploiting scaling laws for designing polymeric bottle brushes: a theoretical coarse-graining for homopolymeric branched polymers

Article information

Article type
Paper
Submitted
07 Mar 2019
Accepted
11 Jun 2019
First published
11 Jun 2019

Phys. Chem. Chem. Phys., 2019,21, 14873-14878

Exploiting scaling laws for designing polymeric bottle brushes: a theoretical coarse-graining for homopolymeric branched polymers

P. Corsi, E. Roma, T. Gasperi, F. Bruni and B. Capone, Phys. Chem. Chem. Phys., 2019, 21, 14873 DOI: 10.1039/C9CP01316D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements