Issue 22, 2019

An accurate density functional theory for the vapor–liquid interface of chain molecules based on the statistical associating fluid theory for potentials of variable range for Mie chainlike fluids

Abstract

A new Helmholtz free energy density functional is presented to predict the vapor–liquid interface of chainlike molecules. The functional is based on the last version of the statistical associating fluid theory for potentials of variable range for homogeneous Mie chainlike fluids (SAFT-VR Mie). Following the standard formalism, the density functional theory (SAFT-VR Mie DFT) is constructed using a perturbative approach in which the free energy density contains a reference term to describe all the short-range interactions treated at the local level, and a perturbative contribution to account for the attractive perturbation which incorporates the long-range dispersive interactions. In this first work, we use a mean-field version of the theory in which the pair correlations are neglected in the attractive term. The SAFT-VR Mie DFT formalism is used to examine the effect of molecular chain length and the repulsive exponent of the intermolecular potential on density profiles and surface tension of linear chains made up of up to six Mie (λr − 6) segments with different values of the repulsive exponent of the intermolecular potential. Theoretical predictions from the theory are compared directly with molecular simulation data for density profiles and surface tension of Mie chainlike molecules taken from the literature. Agreement between theory and simulation data is good for short-chain molecules under all thermodynamic conditions of coexistence considered. Once the theory has proven that it is able to predict the interfacial properties, and particularly interfacial tension, the SAFT-VR Mie DFT formalism is used to predict the interfacial behavior of two new coarse-grained models for carbon dioxide and water recently proposed in the literature. In particular, the theoretical formalism, in combination with the coarse-grained models for carbon dioxide and water, is able to predict the interfacial properties of these important substances in a reasonable way.

Graphical abstract: An accurate density functional theory for the vapor–liquid interface of chain molecules based on the statistical associating fluid theory for potentials of variable range for Mie chainlike fluids

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2019
Accepted
14 May 2019
First published
15 May 2019

Phys. Chem. Chem. Phys., 2019,21, 11937-11948

An accurate density functional theory for the vapor–liquid interface of chain molecules based on the statistical associating fluid theory for potentials of variable range for Mie chainlike fluids

J. Algaba, J. M. Míguez, B. Mendiboure and F. J. Blas, Phys. Chem. Chem. Phys., 2019, 21, 11937 DOI: 10.1039/C9CP01597C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements