Issue 28, 2019

The K2(9-ethylguanine)122+ quadruplex is more stable to unimolecular dissociation than the K(9-ethylguanine)8+ quadruplex in the gas phase: a BIRD, energy resolved SORI-CID, IRMPD spectroscopic, and computational study

Abstract

A combination of experimental trapped-ion mass spectrometric studies and computational chemistry has been used in the present work to assess the intrinsic properties of the potassiated 9-ethylguanine (9eG) self-assembled quadruplex, K2(9eG)122+, in the gas phase. Infrared multiple photon dissociation (IRMPD) spectroscopy in the N–H/C–H stretching region (2700–3800 cm−1) revealed that this G-quadruplex is a sandwich-type structure with two G-tetrads sandwiching each of the two K+, very similar to the structure determined previously for the K(9eG)8+ complexes. The stability of K2(9eG)122+ toward unimolecular dissociation and its binding energy were examined using energy-resolved sustained off-resonance collision induced dissociation (SORI-CID) and blackbody infrared radiative dissociation (BIRD) kinetics experiments. SORI-CID experiments showed that the self-assembled K2(9eG)122+ complex undergoes charge separation forming K(9eG)8+ and K(9eG)4+ compared to K(9eG)8+ which loses neutral 9eG. More interestingly, K2(9eG)122+ is more stable toward unimolecular dissociation activated by SORI-CID than the K(9eG)8+ complex. Temperature dependent BIRD kinetics for K2(9eG)122+ were consistent with energy-resolved SORI-CID results showing K2(9eG)122+ to have an activation energy of 225 ± 15 kJ mol−1, approximately 50 kJ mol−1 greater than that determined for K(9eG)8+. The extra stability of K2(9eG)122+ is apparently not thermodynamic stability, but most likely due to an energy barrier for dissociation.

Graphical abstract: The K2(9-ethylguanine)122+ quadruplex is more stable to unimolecular dissociation than the K(9-ethylguanine)8+ quadruplex in the gas phase: a BIRD, energy resolved SORI-CID, IRMPD spectroscopic, and computational study

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2019
Accepted
18 Jun 2019
First published
19 Jun 2019

Phys. Chem. Chem. Phys., 2019,21, 15319-15326

The K2(9-ethylguanine)122+ quadruplex is more stable to unimolecular dissociation than the K(9-ethylguanine)8+ quadruplex in the gas phase: a BIRD, energy resolved SORI-CID, IRMPD spectroscopic, and computational study

M. Azargun, P. J. Meister, J. W. Gauld and T. D. Fridgen, Phys. Chem. Chem. Phys., 2019, 21, 15319 DOI: 10.1039/C9CP01651A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements