Issue 34, 2019

Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity – an X-ray and light scattering study

Abstract

The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an α-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function.

Graphical abstract: Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity – an X-ray and light scattering study

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2019
Accepted
25 Jun 2019
First published
09 Jul 2019

Phys. Chem. Chem. Phys., 2019,21, 18727-18740

Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity – an X-ray and light scattering study

K. Shou, A. Bremer, T. Rindfleisch, P. Knox-Brown, M. Hirai, A. Rekas, C. J. Garvey, D. K. Hincha, A. M. Stadler and A. Thalhammer, Phys. Chem. Chem. Phys., 2019, 21, 18727 DOI: 10.1039/C9CP01768B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements