Issue 28, 2019

Site-specific X-ray induced dynamics in liquid methanol

Abstract

Complex chemical and biochemical systems are susceptible to damage from ionising radiation. However, questions remain over the extent to which such damage is influenced by the nature of the surrounding chemical environment, which can consist of both hydrophobic and hydrophilic domains. To gain fundamental insight into the first crucial mechanistic steps of radiation damage in such systems, we need to understand the initial radiation response, i.e. dynamics occurring on the same timescale as electronic relaxation, which occur in these different environments. Amphiphilic molecules contain both hydrophobic and hydrophilic domains, but the propensity for charge delocalisation and proton dynamics to occur in these different domains has been largely unexplored so far. Here, we present carbon and oxygen 1s Auger spectra for liquid methanol, one of the simplest amphiphilic molecules, as well as its fully deuterated equivalent d4-methanol, in order to explore X-ray induced charge delocalisation and proton dynamics occurring on the few femtosecond timescale. Unexpectedly, we find a similar propensity for proton dynamics to occur at both the carbon and oxygen site within the lifetime of the core hole. Our results could serve as a model for decay processes that are likely to occur in other more complex amphiphilic systems.

Graphical abstract: Site-specific X-ray induced dynamics in liquid methanol

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2019
Accepted
25 Jun 2019
First published
26 Jun 2019
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2019,21, 15478-15486

Site-specific X-ray induced dynamics in liquid methanol

C. Saak, I. Unger, B. Brena, C. Caleman and O. Björneholm, Phys. Chem. Chem. Phys., 2019, 21, 15478 DOI: 10.1039/C9CP02063B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements