Issue 31, 2019

Oscillator strengths and integral cross sections of the valence-shell excitations of HCl studied by fast electron scattering

Abstract

The oscillator strengths and integral cross sections of the valence-shell excitations of HCl have significant applications in the studies of planetary atmospheres and interstellar gases. In the present work, the generalized oscillator strengths of the valence-shell excitations of HCl have been measured at an incident electron energy of 1500 eV and an energy resolution of 70 meV, and their momentum transfer dependence behaviors have been elucidated. It is observed that the generalized oscillator strength ratios of the b3Π1(ν′ = 0) state to the C1Π(ν′ = 0) state are a constant and independent of the squared momentum transfer, and this typical behavior in the momentum space is explained by the intraconfiguration mixing of the b3Π1 and C1Π states due to the spin–orbital interaction. The optical oscillator strengths of the valence-shell excitations have been obtained by extrapolating the generalized oscillator strengths to the limit of zero squared momentum transfer. The present optical oscillator strengths give an independent cross-check to the previous experimental and theoretical results, and it is found that most of the photoabsorption measurements are limited by the line saturation effect. The integral cross sections of the valence-shell excitations of HCl have been obtained systematically from the threshold to 5000 eV with the aid of the BE-scaling method.

Graphical abstract: Oscillator strengths and integral cross sections of the valence-shell excitations of HCl studied by fast electron scattering

Article information

Article type
Paper
Submitted
23 Apr 2019
Accepted
20 Jul 2019
First published
22 Jul 2019

Phys. Chem. Chem. Phys., 2019,21, 17433-17440

Oscillator strengths and integral cross sections of the valence-shell excitations of HCl studied by fast electron scattering

Y. Xu, Y. Liu, X. Du, L. Xu and L. Zhu, Phys. Chem. Chem. Phys., 2019, 21, 17433 DOI: 10.1039/C9CP02284H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements