Can reactions follow non-traditional second-order saddle pathways avoiding transition states?†
Abstract
We report here an ab initio (CASSCF/6-31+G*) trajectory simulation study on the mechanisms of the denitrogenation of 1-pyrazoline and its subsituted analogue that reveals reaction pathways via a high energy second-order saddle (SOS) region. This mechanism involves the molecule adopting a five-membered planar structure contrary to the traditional boat-like transition state. The SOS offers a trifurcation point where a pathway branches into three, different from the single pathway associated with a transitions state. We observe that the molecules following the SOS path exhibit distinctive dynamical features and form products with high translational energies and low rotational energies compared to those following the traditional pathways. In addition, the SOS pathway provides an alternative mechanism for the formation of stereo-selective products. Interestingly, although the reaction proceeds via a trimethylene diradical intermediate, the simulations show that the product cyclopropane is formed with a major single inversion of the configuration consistent with experimental observations. They also reveal mechanisms that do not follow the minimum energy paths and exhibit non-statistical dissociation dynamics.
- This article is part of the themed collection: 2019 PCCP HOT Articles