Issue 39, 2019

NMR shifts in aluminosilicate glasses via machine learning

Abstract

Machine learning (ML) approaches are investigated for the prediction of nuclear magnetic resonance (NMR) parameters in aluminosilicate glasses, for which NMR has proven to be a cutting-edge method over the last decade. DFT computations have emerged as a new dimension for complementing these NMR methods although suffering from severe limitations in terms of size, time and computational resources consumption. While previous approaches tend to use DFT-GIPAW calculations for the prediction of NMR parameters in glassy systems, we propose to employ ML methods, characterized by a speed similar to that of classical molecular dynamics while the accuracy of ab initio methods can be reached. We design ML procedures to predict the isotropic magnetic shielding (σiso) for different multicomponent relevant glass compositions. The ML predictions of σiso deviate from DFT-GIPAW calculations, when including relaxed and room-temperature structures, by 0.7 ppm for 29Si (1.0% of the total span of the calculated Image ID:c9cp02803j-t1.gif) and 1.5 ppm for 17O (1.9%) in SiO2 glasses, 1.4 ppm for 23Na (1.5%) in Na2O–SiO2 and 1.5 ppm for 27Al (2.1%) in Al2O3–Na2O–SiO2 systems. We compare the performances obtained for a set of three descriptors suitable for encoding atomic local environments information (atom-centered representations) together with seven popular ML algorithms with a focus on the simple (but robust) linear ridge regression (LRR) and the popular smooth overlap of atomic positions (SOAP) descriptor.

Graphical abstract: NMR shifts in aluminosilicate glasses via machine learning

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2019
Accepted
30 Jul 2019
First published
01 Aug 2019

Phys. Chem. Chem. Phys., 2019,21, 21709-21725

NMR shifts in aluminosilicate glasses via machine learning

Z. Chaker, M. Salanne, J. Delaye and T. Charpentier, Phys. Chem. Chem. Phys., 2019, 21, 21709 DOI: 10.1039/C9CP02803J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements