Issue 45, 2019

Molecular motions, structure and hydration behaviour of glucose oligomers in aqueous solution

Abstract

The degree of polymerization and temperature dependencies of the molecular motions, configuration and hydration behaviour of glucose oligomers (Gn, n = 2 to 7, degree of polymerization) in aqueous solutions were investigated using extremely high-frequency dielectric spectrum measuring techniques up to 50 GHz. The obtained dielectric spectra for the aqueous Gn solutions were well decomposed into four Debye-type relaxation modes. The fastest relaxation mode j = 1 was assigned to the rotational process of free water molecules in the sample solution. The second fastest mode j = 2 was attributed to the exchange process of hydrated water molecules with free water molecules, and the third mode j = 3 was recognized as the rotational process of hydroxy groups attached to each repeating glucopyranoside (Glu) unit after their lifetimes of intramolecular hydrogen bonding. The slowest mode j = 4 at a relaxation time depending on n was assigned to the overall rotation of the Gn molecules possessing configurations similar to that of small fragments of single helical V-type crystalline structures at low temperatures. The presence of the dielectric mode j = 4 revealed that the Glu units possessed electric dipole moments carrying a component parallel to the Gn backbone aligned with the C1 → C4 direction. The number of hydrated water molecules per Glu unit (hydration number, nH) was determined for Gns in aqueous solutions in the temperature range from 10 °C to 70 °C via the relaxation strength of mode j = 1. The Gn oligomers were highly soluble in water within the temperature range examined, possessing nH values slightly dependent on n and demonstrated clear dehydration behaviour at approximately 30 °C with increasing temperature. These temperature dependencies of nH were substantially weaker than those of a model Glu unit compound, methyl α-D-glucopyranoside (G1). Then, the polymerization of glucose oligomers effectively depresses the dehydration behaviour of G1.

Graphical abstract: Molecular motions, structure and hydration behaviour of glucose oligomers in aqueous solution

Article information

Article type
Paper
Submitted
22 Sep 2019
Accepted
03 Nov 2019
First published
04 Nov 2019

Phys. Chem. Chem. Phys., 2019,21, 25379-25388

Molecular motions, structure and hydration behaviour of glucose oligomers in aqueous solution

K. Arai and T. Shikata, Phys. Chem. Chem. Phys., 2019, 21, 25379 DOI: 10.1039/C9CP05214C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements