Issue 48, 2019

Analysis of thyme essential oils using gas-phase broadband rotational spectroscopy

Abstract

A semi-quantitative analysis of the components of two natural essential oils has been carried out using broadband rotational spectroscopy, which is inherently molecule specific. The samples under study were two thyme essential oils from Spain with different compositions: (a) with thymol as the most abundant species (thyme I) and (b) with linalool and 4-carvomenthenol being the most abundant ones (thyme II). Relative intensity measurements of selected rotational transitions were carried out to estimate the abundances of the different species present in these complex mixtures, taking into account the square of the respective dipole moment components. One strength of rotational spectroscopy is its structure sensitivity. Here, we also re-investigated the microwave spectrum of linalool and determined the accurate experimental gas-phase structures of thymol and linalool through the assignment of all 13C isotopologues of their lowest energy conformers. A characteristic splitting pattern of the rotational transitions due to internal rotation of two non-equivalent methyl groups of linalool was observed in the thyme II spectrum. Their internal rotation barriers were experimentally determined to 4.7703(96) kJ mol−1 and 9.2581(74) kJ mol−1, respectively.

Graphical abstract: Analysis of thyme essential oils using gas-phase broadband rotational spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2019
Accepted
15 Nov 2019
First published
18 Nov 2019

Phys. Chem. Chem. Phys., 2019,21, 26569-26579

Analysis of thyme essential oils using gas-phase broadband rotational spectroscopy

M. M. Quesada-Moreno, A. Krin and M. Schnell, Phys. Chem. Chem. Phys., 2019, 21, 26569 DOI: 10.1039/C9CP05583E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements