Issue 3, 2019

Phenyl-grafted carbon nitride semiconductor for photocatalytic CO2-reduction and rapid degradation of organic dyes

Abstract

Molecular engineering of graphitic carbon nitride (g-C3N4) is achieved by the copolymerization of π-conjugated phenyl urea, melamine, and urea. Integration of aromatic phenyl rings into the heptazine network of g-C3N4 alters its structural, optical and electronic properties. The fusion of the polymeric g-C3N4 core with aromatic phenyl groups induces band gap tuning, which greatly improves the separation and lifetime of charge-carriers. As a result, CO2 photoreduction experiments conducted by using phenyl-grafted g-C3N4 afford methane and formic acid in high yields. Furthermore, a selective model organic pollutant rhodamine B dye is rapidly decomposed under visible-light irradiation. This work suggests that pyrolysis of a suitable aromatic π-deficient molecular dopant such as phenyl urea can drastically alter the photo-response of the carbon nitride photocatalyst and may enhance its photocatalytic activity. Hence, the present work is expected to be of significant value in sustainable energy production and environmental remediation.

Graphical abstract: Phenyl-grafted carbon nitride semiconductor for photocatalytic CO2-reduction and rapid degradation of organic dyes

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2018
Accepted
06 Jan 2019
First published
07 Jan 2019

Catal. Sci. Technol., 2019,9, 822-832

Phenyl-grafted carbon nitride semiconductor for photocatalytic CO2-reduction and rapid degradation of organic dyes

D. Vidyasagar, N. Manwar, A. Gupta, S. G. Ghugal, S. S. Umare and R. Boukherroub, Catal. Sci. Technol., 2019, 9, 822 DOI: 10.1039/C8CY02220H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements