Mechanistic study of the selective hydrogenation of carboxylic acid derivatives over supported rhenium catalysts†
Abstract
The structure and performance of TiO2-supported Re (Re/TiO2) catalysts for selective hydrogenation of carboxylic acid derivatives have been investigated. Re/TiO2 promotes selective hydrogenation reactions of carboxylic acids and esters that form the corresponding alcohols, and of amides that generate the corresponding amines. These processes are not accompanied by reduction of aromatic moieties. A Re loading amount of 5 wt% and a catalyst pretreatment with H2 at 500 °C were identified as being optimal to obtain the highest catalytic activity for the hydrogenation processes. The results of studies using various characterization methods, including X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM), indicate that the Re species responsible for the catalytic hydrogenation processes have sub-nanometer to a few nanometer sizes and average oxidation states higher than 0 and below +4. The presence of either a carboxylic acid and/or its corresponding alcohol is critical for preventing the Re/TiO2 catalyst from promoting production of dearomatized byproducts. Although Re/TiO2 is intrinsically capable of hydrogenating aromatic rings, carboxylic acids, alcohols, amides, and amines strongly adsorb on the Re species, which leads to suppression of this process. Moreover, the developed catalytic system was applied to selective hydrogenation of triglycerides that form the corresponding alcohols.