Nanocrystalline Sb-doped SnO2 films modified with cyclometalated ruthenium complexes for two-step electrochromism
Abstract
Sb-Doped nanocrystalline SnO2 (SnO2:Sb) thin films functionalized with cyclometalated ruthenium complexes 1 or 2 on FTO conductive glasses have been prepared and characterized. These complexes contain a redox-active amine unit separated from the ruthenium ion by a phenyl or biphenyl linker, respectively, to modify the absorption wavelengths at different redox states. Near-infrared electrochromism of both films has been examined by oxidative spectroelectrochemical measurements and double-potential-step chronoamperometry. A contrast ratio (ΔT%) of 33% at 1070 nm and 63% at 696 nm has been achieved for the SnO2:Sb/1 film in two stepwise oxidation processes, respectively. The other film with complex 2 shows two-step electrochromism at 1310 and 806 nm with ΔT% of 36% and 76%, respectively. The response time of electrochromic switching is around a few seconds. Taking advantage of the good contrast ratio, the rapid response, and the long retention time of each oxidation state, these films have been successfully used to demonstrate surface-confined flip-flop memory functions with a high ON/OFF ratio.