A hybrid composite of hydroxyapatite and Ca–Al layered double hydroxide supported Au nanoparticles for highly efficient base-free aerobic oxidation of glucose†
Abstract
In this work, a new hybrid composite of hydroxyapatite and Ca–Al layered double hydroxide (HAP-LDH) was successfully assembled via an in situ growth route, by which large quantities of small needle-like HAP crystals in situ grew over the lateral surface of large platelet-like CaAl-LDH particles, and applied to immobilize Au nanoparticles for base-free aerobic glucose oxidation in water to produce gluconic acid using molecular oxygen. A combination of characterization techniques and catalytic experiments revealed that the activity of supported Au catalysts was strongly associated with the composition of supports, and the hybrid HAP-LDH supported one with a Au loading amount of about 0.2 wt% delivered a high gluconic acid yield of >98% under optimal reaction conditions, along with a quite high turnover frequency value of ∼20 225 h−1. High efficiency of the as-formed Au/HAP-LDH was mainly ascribed to cooperation between favorable surface Au species (Au0/Auδ+) and abundant basic sites. Furthermore, the present catalyst also presented good structural stability, because of the novel hybrid three-dimensional nano/microstructure of the HAP-LDH composite support facilitating the stabilization of active Au species and components of the support. The present synthesis strategy of employing a hybrid composite support provides a new way to design stable and high-performance supported metal nanocatalysts for a variety of advanced heterogeneous catalytic processes.