Issue 28, 2019

Tetrahedral nickel(ii) and cobalt(ii) bis-o-iminobenzosemiquinonates

Abstract

The new bis-o-iminobenzosemiquinonate nickel and cobalt complexes (imSQt-Bu)2M (M = Ni (1), Co (2)), where imSQ is a radical anion of 4,6-di-tert-butyl-N-(tert-butyl)-o-iminobenzoquinone, were synthesized and characterized in detail. The molecular structures of 1 and 2 have been established by single-crystal X-ray analysis. The metal atoms in 1 and 2 have a distorted tetrahedral environment, and the dihedral angles between the planes of two radical imSQ ligands are approximately 80° in both complexes. According to the structural and spectroscopy data along with magnetic susceptibility measurements the electronic structure of the complexes should be interpreted definitely as a high spin metal center NiII (d8, S = 1) in 1 and CoII (d7, S = 3/2) in 2 bonded with two o-iminobenzosemiquinonate radicals (Srad = 1/2). The strong antiferromagnetic metal–ligand spin interactions in both complexes lead to the observed St = 0 and St = 1/2 ground states in 1 and 2, respectively. The computational DFT UB3LYP/6-311++G(d,p) studies performed on 1 and 2 are in good agreement with experimental data. Complexes 1 and 2 have similar electrochemical properties. The electrochemical reduction of the complexes includes two quasi-reversible one-electron-transfer waves in the cathodic region corresponding to the formation of the anions [M(AP)2]2− and [(imSQ)M(AP)]1− (AP – dianion of 4,6-di-tert-butyl-N-(tert-butyl)-o-iminobenzoquinone), while in the anodic region only one quasi-reversible redox process was registered. All redox processes are shown to be ligand-based.

Graphical abstract: Tetrahedral nickel(ii) and cobalt(ii) bis-o-iminobenzosemiquinonates

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2019
Accepted
18 Jun 2019
First published
19 Jun 2019

Dalton Trans., 2019,48, 10723-10732

Tetrahedral nickel(II) and cobalt(II) bis-o-iminobenzosemiquinonates

I. V. Ershova, I. V. Smolyaninov, A. S. Bogomyakov, M. V. Fedin, A. G. Starikov, A. V. Cherkasov, G. K. Fukin and A. V. Piskunov, Dalton Trans., 2019, 48, 10723 DOI: 10.1039/C9DT01424A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements