Issue 42, 2019

Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6−xSx

Abstract

Inspired by the good performance of argyrodites as ion conducting thermoelectrics and as solid electrolytes we investigated the effect of isovalent S2− substitution for Se2− in Cu7PSe6. At room temperature Cu7PSe6 crystallizes in the primitive cubic β-polymorph of the argyrodite structure and transforms to the face-centered high-temperature (HT) γ-modification above 320 K. The transition for the homologous Cu7PS6 occurs at 510 K. Promising thermoelectric and ion conducting properties are observed only in the HT modification, where the cations are mobile. Using Rietveld refinements against X-ray diffraction data the effect of isovalent S2− substitution for Se2− on the structural and transport properties in Cu7PSe6−xSx was analyzed. While a step-wise incorporation of S2− showed typical behavior for a homogeneous solid solution series, the analysis of the diffraction data gave clear evidence of anion ordering due to site preference of the sulfide ions, which can be rationalized using Pearson's HSAB concept. This leads to a stabilization of the HT structure even at lower temperatures. This selective control enables new strategies for the design of argyrodite materials, as isovalent substitution not only allows an engineering of properties, but also permits the stabilization of the polymorph with the most promising properties.

Graphical abstract: Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6−xSx

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2019
Accepted
14 Sep 2019
First published
16 Sep 2019

Dalton Trans., 2019,48, 15822-15829

Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6−xSx

F. Reissig, B. Heep, M. Panthöfer, M. Wood, S. Anand, G. J. Snyder and W. Tremel, Dalton Trans., 2019, 48, 15822 DOI: 10.1039/C9DT03247A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements