Copper complexes for the promotion of iminopyridine ligands derived from β-alanine and self-aldol additions: relaxivity and cytotoxic properties†
Abstract
In the study presented herein, we explore the ability of copper complexes with coordinated pyridine-2-carboxaldehyde (pyca) or 2-acetylpyridine (acepy) ligands to promote the addition of amines (Schiff condensation) and other nucleophiles such as alcohols (hemiacetal formation). Distinct reactivity patterns are observed: unlike pyca complexes, acepy copper complexes can promote self-aldol addition. The introduction of a flexible chain via Schiff condensation with β-alanine allows the possibility of chelate ring ring-opening processes mediated by pH. Further derivatization of the complex [CuCl(py-2-C(H)NCH2CH2COO)] is possible by replacing its chloride ligand with different pseudohalogens (N3−, NCO− and NCS−). In addition to the change in their magnetism, which correlates with their solid-state structures, more unexpected effects in their cytotoxicity and relaxitivities are observed, which determines their possibility to be used as MRI contrast agents. The replacement of a chloride by another pseudohalogen, although a simple strategy, can be used to critically change the cytotoxicity of the Schiff base copper(II) complex and its selectivity towards specific cell lines.