Issue 3, 2019

Helical cobalt borophosphates to master durable overall water-splitting

Abstract

The sustainable electrochemical production of hydrogen from water is a key element in the transition toward carbon-neutral energy systems. Application at a global scale requires the discovery of precious metal-free electrocatalysts that unify high energetic efficiency, long-term stability and economic viability. Here we report the striking properties of noble metal-free, alkali-metal cobalt borophosphates acting as robust and efficient materials for bi-functional electrocatalytic water-splitting to give hydrogen and oxygen. Alkali-metal cobalt borophosphates are porous crystalline inorganic materials with chiral DNA-like helical structures bearing two chemically distinct types of water molecules, coordinated and strands of hydrate water associated via hydrogen bonds, located in the channels, which are predestined to possess superior catalytic performance. Depending on the applied electrode potential, they can be reversibly switched between catalysis of the hydrogen and oxygen evolution reactions, both at low overpotentials. This bifunctionality provides access to technologically simple overall water-splitting systems with energetic efficiencies exceeding the 75% level (above 90% based on a higher heating value) and uncompromised long-term stability, now verified with a two-and-a-half month period.

Graphical abstract: Helical cobalt borophosphates to master durable overall water-splitting

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2018
Accepted
17 Oct 2018
First published
17 Oct 2018

Energy Environ. Sci., 2019,12, 988-999

Helical cobalt borophosphates to master durable overall water-splitting

P. W. Menezes, A. Indra, I. Zaharieva, C. Walter, S. Loos, S. Hoffmann, R. Schlögl, H. Dau and M. Driess, Energy Environ. Sci., 2019, 12, 988 DOI: 10.1039/C8EE01669K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements