Issue 5, 2019

Metal chalcogenide quantum dot-sensitized 1D-based semiconducting heterostructures for optical-related applications

Abstract

In terms of understanding and tuning the optoelectronic behavior of 3rd generation solar cells, such as quantum dot (QD)-sensitized solar cells, QD-based heterostructures represent an excellent and relevant model system and opportunity for analyzing exciton dissociation and charge separation across a well-defined nanoscale interface. In particular, because QDs possess a tunable bandgap and the capability of initiating multi-electron exciton generation, QD-based components tend to be incorporated within optical-related devices, including photovoltaics, light emitting diodes, photoelectrochemical devices, photosensors, and phototransistors. The community has collectively expended significant effort in terms of creating, formulating, and optimizing novel forms of heterostructures comprised of QDs, immobilized by predominantly chemical means onto one-dimensional (1D) motifs, such as but not limited to carbon nanotubes (CNTs) and carbon nanofibers (CNFs). In so doing, it has been noted that key physical variables such as but not limited to (a) QD size, (b) QD loading and coverage, as well as (c) ligand identity can impact upon optoelectronic behavior of CNT-based heterostructures. In recent years, work has extended towards analyzing the optoelectronic ‘cross-communication’ between QDs with related, adjoining 1D semiconducting metal oxides, metal chalcogenides, and metal fluorides. In these examples, other important factors that also are relevant for determining the optical properties of these more generalized classes of heterostructures include parameters, such as (i) morphology, (ii) surface coverage, (iii) chemical composition of the underlying platform, (iv) QD identity, (v) luminescence properties of activating species, as well as (vi) the identity and concentration of dopant ions. In other words, to alter, manage, and manipulate the charge versus energy transfer channels within these materials in a deterministic manner requires basic insights into the close correlation and interplay between physical structure, chemical bonding, and observed performance.

Graphical abstract: Metal chalcogenide quantum dot-sensitized 1D-based semiconducting heterostructures for optical-related applications

Article information

Article type
Perspective
Submitted
23 Jul 2018
Accepted
06 Feb 2019
First published
28 Feb 2019

Energy Environ. Sci., 2019,12, 1454-1494

Author version available

Metal chalcogenide quantum dot-sensitized 1D-based semiconducting heterostructures for optical-related applications

S. Yue, L. Li, S. C. McGuire, N. Hurley and S. S. Wong, Energy Environ. Sci., 2019, 12, 1454 DOI: 10.1039/C8EE02143K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements