Issue 2, 2019

Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity

Abstract

Ultrahigh discharge energy density (Wdis = 10.5 J cm−3) and efficiency (η = 87%) have been obtained in doped BiFeO3–BaTiO3 ceramic multilayers by achieving an electrically rather than chemically homogeneous microstructure. Back scattered scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy mapping of (0.7 − x)BiFeO3–0.3BaTiO3xNd(Zn0.5Zr0.5)O3 (0.05 ≤ x ≤ 0.10) ceramics revealed a core–shell grain structure which switched from a bright to dark contrast as x increased. Compositions with x = 0.08 were at the point of cross over between these two manifestations of core–shell contrast. Dielectric measurements together with the absence of macrodomains in diffraction contrast TEM images suggested that compositions with x = 0.08 exhibited relaxor behaviour within both the core and shell regions. Impedance spectroscopy demonstrated that, despite being chemical dissimilar, the grains were electrically homogeneous and insulating with little evidence of conductive cores. Multilayers of x = 0.08 had enhanced breakdown strength, EBDS > 700 kV cm−1 and a slim hysteresis loop which resulted in large Wdis and high η which were temperature stable to <15% from 25 to 150 °C.

Graphical abstract: Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity

Supplementary files

Article information

Article type
Communication
Submitted
08 Nov 2018
Accepted
09 Jan 2019
First published
15 Jan 2019

Energy Environ. Sci., 2019,12, 582-588

Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity

G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang, A. Feteira, D. Zhou, D. C. Sinclair, T. Ma, X. Tan, D. Wang and I. M. Reaney, Energy Environ. Sci., 2019, 12, 582 DOI: 10.1039/C8EE03287D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements