Issue 11, 2019

A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency

Abstract

Thiophene and its derivatives have been extensively used in organic electronics, particularly in the field of polymer solar cells (PSCs). Significant research efforts have been dedicated to modifying thiophene-based units by attaching electron-donating or withdrawing groups to tune the energy levels of conjugated materials. Herein, we report the design and synthesis of a novel thiophene derivative, FE-T, featuring a monothiophene functionalized with both an electron-withdrawing fluorine atom (F) and an ester group (E). The FE-T unit possesses distinctive advantages of both F and E groups, the synergistic effects of which enable significant downshifting of the energy levels and enhanced aggregation/crystallinity of the resulting organic materials. Shown in this work are a series of polymers obtained by incorporating the FE-T unit into a PM6 polymer to fine-tune the energetics and morphology of this high-performance PSC material. The optimal polymer in the series shows a downshifted HOMO and an improved morphology, leading to a high PCE of 16.4% with a small energy loss (0.53 eV) enabled by the reduced non-radiative energy loss (0.23 eV), which are among the best values reported for non-fullerene PSCs to date. This work shows that the FE-T unit is a promising building block to construct donor polymers for high-performance organic photovoltaic cells.

Graphical abstract: A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency

Supplementary files

Article information

Article type
Paper
Submitted
14 Jun 2019
Accepted
29 Jul 2019
First published
29 Aug 2019

Energy Environ. Sci., 2019,12, 3328-3337

A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency

H. Sun, T. Liu, J. Yu, T. Lau, G. Zhang, Y. Zhang, M. Su, Y. Tang, R. Ma, B. Liu, J. Liang, K. Feng, X. Lu, X. Guo, F. Gao and H. Yan, Energy Environ. Sci., 2019, 12, 3328 DOI: 10.1039/C9EE01890E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements