Issue 6, 2019

Brown carbon in the continental outflow to the North Indian Ocean

Abstract

In this paper, we synthesize the size distribution and optical properties of the atmospheric water-soluble fraction of light-absorbing organic carbon (brown carbon; BrC) in the continental outflow from the Indo-Gangetic Plain (IGP) in South Asia to the North Indian Ocean. A comparison of the mass absorption coefficient of water-soluble BrC (babs-WSBrC-365nm) in PM2.5 with that in PM10 sampled over the Bay of Bengal reveals the dominance of BrC in fine mode. Furthermore, the babs-BrC-365nm shows a significant linear relationship with mass concentrations of airborne particulate matter, water-soluble organic carbon and non-sea-salt-K+ in the continental outflow from the IGP. This observation emphasizes the ubiquitous nature and significant contribution of water-soluble BrC from biomass burning emissions (BBEs). Comparing the absorption properties from this study with global datasets, it is discernible that BBEs dominate BrC absorption. Furthermore, the imaginary refractive index of water-soluble BrC (kWSBrC-365nm) in marine aerosols sampled over the North Indian Ocean during November is significantly higher than during December to January. Thus, significant temporal variability is associated with crop-residue burning emissions in the IGP on the composition of BrC over the North Indian Ocean. Our estimates show that the babs-WSBrC-365nm and kWSBrC-365nm from post-harvest crop-residue burning emissions in the IGP are much higher than the BBEs from the southeastern United States and Amazonian forest fires. Another major finding of this study is the lack of significant relationship between kWSBrC-365nm and the mass ratio of elemental carbon to particulate organic matter, as previously suggested by chamber experiments to model varying BrC absorption properties in ambient aerosols. Therefore, considerable spatio-temporal variability prevails among emission sources (wood burning vs. crop-residue burning), which needs to be considered when assessing the regional radiative forcing of BrC relative to major absorbing elemental carbon.

Graphical abstract: Brown carbon in the continental outflow to the North Indian Ocean

Supplementary files

Article information

Article type
Paper
Submitted
21 Feb 2019
Accepted
30 Apr 2019
First published
30 Apr 2019

Environ. Sci.: Processes Impacts, 2019,21, 970-987

Brown carbon in the continental outflow to the North Indian Ocean

S. Bikkina and M. Sarin, Environ. Sci.: Processes Impacts, 2019, 21, 970 DOI: 10.1039/C9EM00089E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements