Issue 1, 2019

Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods

Abstract

Nanomaterials in powder forms are widely produced and used in numerous applications. Nanomaterial identification is a growing concern for several areas encountering these substances. The current reference criterion of the European Commission (EC) for nanoparticle identification is the number size distribution of the constituent particles. One example of how the latter can be obtained is by the electron microscopy (EM) method. However, this method is not widely available and is time-consuming to perform and use for analysis. Alternative methods, such as the volume specific surface area (VSSA), also allow nanomaterial identification. The VSSA is the product of the external specific surface area of the powder and its skeletal density, and appears to be adapted more specifically for powders. The techniques required to measure the two parameters used to calculate the VSSA are more widely available than EM, but sample preparation can be delicate. Furthermore, deeper evaluation of the reliability of VSSA for nanomaterial classification as well as a more detailed characterization methodology for its implementation and discussion about the relative merits of this method versus EM are still necessary. Here, we determined, through a detailed and operational characterization strategy, the VSSA for seven metal oxide powders (4 TiO2, 1 SiO2, and 2 CaCO3) and an activated carbon, with all of them produced on an industrial scale. These eight samples covered a range of constituent particle sizes between 10 nm and 18 μm. Equivalent particle sizes determined by the VSSA, X-ray diffraction (XRD) (another method giving access to an equivalent particle size and integrated into our characterization methodology) and scanning electron microscopy (SEM) (reference method) were compared. The results showed that the VSSA can robustly identify nanomaterials in the form of powders (−12% mean bias on equivalent particle sizes relative to SEM).

Graphical abstract: Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2018
Accepted
25 Oct 2018
First published
26 Oct 2018

Environ. Sci.: Nano, 2019,6, 152-162

Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods

C. Dazon, O. Witschger, S. Bau, V. Fierro and P. L. Llewellyn, Environ. Sci.: Nano, 2019, 6, 152 DOI: 10.1039/C8EN00760H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements